This appendix explores the relationship between Yalcin (2007) andl Veltman’s (1996) semantics for epistemic modals. A modification of Yalcin’s semantics from Klinedinst and Rothschild (2012) is used as well as the standard modification of Veltman’s semantics discussed.
Basic assumptions
We assume again a language \(\mathcal{L}\) syntax of propositional logic with modal operators for both semantics and a standard set of worlds. We write \({[\hspace{-.02in}[{a}]\hspace{-.02in}]}\) for the worlds in which the atomic formula \(a\) is true (what we wrote as \(I(a)\) earlier). For the dynamic system we give a semantics that assigns to sentence an update on an arbitrary context \(c\) (the update of \(\phi\) on \(c\) is written \(c[\phi]\). For the static semantics we define a denotation function \({[\hspace{-.02in}[{\cdot}]\hspace{-.02in}]}\) that gives relative to a world \(w\) and a context \(s\) (again a set of worlds) a truth-value (i.e. \({[\hspace{-.02in}[{\cdot}]\hspace{-.02in}]}: \mathcal L \times W \times \mathcal P (W) \to \{0,1\}\)). We then prove that both systems induce the same ‘updates’.
Modified Veltman semantics
\(c[a] = c \cap {[\hspace{-.02in}[{a}]\hspace{-.02in}]}\)
\(c[\lnot \phi] = c \backslash c[\phi]\)
\(c[\phi \land \psi] = (c[\phi])[\psi]\)
\(c[\phi \lor \psi] = c[\phi] \cup (c[\lnot \phi])[\psi]\)
\(c[\Box \phi] = c\), if \(c[\phi] = c\), otherwise \(\emptyset\)
\(c[\Diamond \phi] = c[\lnot \Box \lnot \phi]\)
Modified Yalcin Semantics
\({[\hspace{-.02in}[{A}]\hspace{-.02in}]}^{w, s}\) is true iff \(w\) is in \({[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}\).
\({[\hspace{-.02in}[{\lnot \phi }]\hspace{-.02in}]}^{w,s}\) is true iff \({[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}^{w,s}\) is false.
\({[\hspace{-.02in}[{\phi \land \psi}]\hspace{-.02in}]}^{w,s}\) is true iff \({[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}^{w,s}\) is true and \({[\hspace{-.02in}[{\psi}]\hspace{-.02in}]}^{w,s{[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}}\) is true.
\({[\hspace{-.02in}[{\phi \lor \psi}]\hspace{-.02in}]}\) is true iff \({[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}^{w,s}\) is true or \({[\hspace{-.02in}[{\psi}]\hspace{-.02in}]}^{w,s{[\hspace{-.02in}[{\lnot \phi}]\hspace{-.02in}]}}\) is true.
\({[\hspace{-.02in}[{\Box \phi}]\hspace{-.02in}]}^{w,s}\) is true iff \(\forall w' \in s\) \({[\hspace{-.02in}[{ \phi}]\hspace{-.02in}]}^{w',s}\) is true.
\({[\hspace{-.02in}[{\Diamond \phi}]\hspace{-.02in}]}^{w,s}\) is true iff \({[\hspace{-.02in}[{\Box \lnot \phi}]\hspace{-.02in}]}\) is false.
where \(c{[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}\), the update of \(c\) by \(\phi\), is defined as follows:
\(c{[\hspace{-.02in}[{\phi}]\hspace{-.02in}]} = \{w \in c: {[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}^{w,c} \textrm{ is true}\}\)
Equivalence
The following limited equivalence statement may be made between the two semantics:
For any sentence \(\phi\) any context \(c\), and any world \(w\) in \(c\), \(w \in c[\phi]\) iff \(w \in c{[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}\).
Proof is by induction on formula complexity.
- Base case
if \(\phi\) is simple then the question is just whether \(w\) is in its denotations for both semantics, so the equivalence is trivial.
- Induction Step
Suppose for sentences \(\phi\) and \(\psi\), for any \(c\) and \(w \in c\), that \(w \in c[\phi]\) iff \(w \in c{[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}\).
By case:
- Negation
\(w\) in \(c[\lnot\phi]\\ \textrm{iff } w \in c \backslash c[\phi]\\ \textrm{iff } w \not \in c[\phi] \\ \textrm{iff } w \not \in c {[\hspace{-.02in}[{\phi}]\hspace{-.02in}]} \text{ (by induction hypothesis)} \\ \textrm{iff } {[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}^{w,c}\textrm{ is false}\\ \textrm{iff } {[\hspace{-.02in}[{\lnot \phi}]\hspace{-.02in}]}^{w, c}\textrm{ is true}\\ \textrm{iff } w \in c{[\hspace{-.02in}[{\lnot \phi}]\hspace{-.02in}]}\)
- Conjunction
\(w \in c[\phi \land \psi] \\ \textrm{iff } w \in (c[\phi])[\psi] \\ \textrm{iff } w \in c[\phi] \text{ and } w\in (c[\phi])[\psi] \text{ (given monotonicity of dynamic updates)}\\ \textrm{iff } w \in c{[\hspace{-.02in}[{\phi}]\hspace{-.02in}]} \textrm{ and } w\in (c{[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}){[\hspace{-.02in}[{\psi}]\hspace{-.02in}]} \text{ (by induction hypothesis)}\\ \textrm{iff } {[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}^{w,c}\textrm{ is true}\textrm{ and } {[\hspace{-.02in}[{\psi}]\hspace{-.02in}]}^{w,c{[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}}\textrm{ is true} \\ \textrm{iff } c{[\hspace{-.02in}[{\phi \land \psi}]\hspace{-.02in}]}^{w,c}\textrm{ is true}\\ \textrm{iff } w \in (c{[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}){[\hspace{-.02in}[{\psi}]\hspace{-.02in}]}\)
- Disjunction
Very similar to conjunction, so shortened here:
\(w \in c[\phi \lor\psi] \\ \textrm{iff } w \in c[\phi]\textrm{ or }w \in (c[\lnot \phi])[\psi] \\ \textrm{iff } {[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}^{w,c}\textrm{ is true or } {[\hspace{-.02in}[{\psi}]\hspace{-.02in}]}^{w,c{[\hspace{-.02in}[{\lnot \phi}]\hspace{-.02in}]}}\textrm{ is true} \\ \textrm{iff } w \in c{[\hspace{-.02in}[{\phi \lor \psi}]\hspace{-.02in}]}\)- Necessity Modal
\(w \in c[\Box \phi]\\ \textrm{iff } c[\phi] = c \\ \textrm{iff } \forall w \in c, w \in c[\phi] \\ \textrm{iff } \forall w \in c, w \in c{[\hspace{-.02in}[{\phi}]\hspace{-.02in}]} \\ \textrm{iff } \forall w \in c, {[\hspace{-.02in}[{\phi}]\hspace{-.02in}]}^{w,c}\textrm{ is true}\\ \textrm{iff } {[\hspace{-.02in}[{\Box \phi}]\hspace{-.02in}]}^{w,c}\textrm{ is true}\\ \textrm{iff } w \in c {[\hspace{-.02in}[{\Box \phi}]\hspace{-.02in}]}\)
- Possibility Modal
Follows from previous proofs since defined in terms of necessity modal and negation.1
Klinedinst, Nathan, and Daniel Rothschild. 2012. “Connectives Without Truth-Tables.” Natural Language Semantics 20: 137–75.
Veltman, Frank. 1996. “Defaults in Update Semantics.” Journal of Philosophical Logic 25 (3): 221–61. doi:10.1007/BF00248150.
Yalcin, Seth. 2007. “Epistemic Modals.” Mind 116: 983–1026. doi:10.1093/mind/fzm983.
Thanks to Matt Mandelkern for a few corrections.↩